Lie Triple Derivations on𝒥-Subspace Lattice Algebras

نویسندگان
چکیده

منابع مشابه

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Alternating triple systems with simple Lie algebras of derivations

We prove a formula for the multiplicity of the irreducible representation V (n) of sl(2, C) as a direct summand of its own exterior cube ΛV (n). From this we determine that V (n) occurs exactly once as a summand of ΛV (n) if and only if n = 3, 5, 6, 7, 8, 10. These representations admit a unique sl(2)-invariant alternating ternary structure obtained from the projection ΛV (n) → V (n). We calcul...

متن کامل

Double derivations of n-Lie algebras

After introducing double derivations of $n$-Lie algebra $L$ we‎ ‎describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual‎ ‎derivation Lie algebra $mathcal Der(L)$‎. ‎In particular‎, ‎we prove that the inner derivation algebra $ad(L)$‎ ‎is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra‎ ‎wit...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Lie Algebras of Derivations and Resolvent Algebras

This paper analyzes the action δ of a Lie algebra X by derivations on a C*–algebra A. This action satisfies an “almost inner” property which ensures affiliation of the generators of the derivations δ with A, and is expressed in terms of corresponding pseudo–resolvents. In particular, for an abelian Lie algebra X acting on a primitive C*–algebra A, it is shown that there is a central extension o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/969265